Acta Crystallographica Section E

## Structure Reports <br> Online

ISSN 1600-5368

## Yu-Guang Li, ${ }^{\text {a }}$ Hai-Liang Zhu, ${ }^{\text {a }}$

 Yu Song ${ }^{\mathrm{a}}$ and Seik Weng $\mathbf{N g}^{{ }^{\mathbf{b}} \text { * }}$${ }^{\text {a }}$ Department of Chemistry, Wuhan University of Science and Engineering, Wuhan 430073, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemisty, University of Malaya, 50603
Kuala Lumpur, Malaysia
Correspondence e-mail: seikweng@um.edu.my

## Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.032$
$w R$ factor $=0.109$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## Bis[bis(4-aminopyridine- $\kappa N^{1}$ )silver(I)] terephthalate decahydrate

The $\mathrm{Ag}^{\mathrm{I}}$ atom in the title compound, $\left[\mathrm{Ag}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]_{2}$ $\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right) \cdot 10 \mathrm{H}_{2} \mathrm{O}$, shows linear coordination. The cation and centrosymmetric anion interact indirectly via the noncoordinated water molecules, to furnish a tightly held threedimensional structure.

## Comment

A study of the 2-aminopyridine adduct of disilver(I) terephthalate documented the involvement of both the heterocycle and the anion in bonding with silver, resulting in threecoordinate Ag (Zhu, Liu et al., 2003). Surprisingly, the bis(4aminopyridine) silver cation does not interact directly with the terephthalate ion in the title compound, (I) (Fig. 1), despite the similarity of the heterocyclic ligands. Thus, the Ag atom in (I) shows only linear coordination (Table 1). The cation and dianion, the latter possessing inversion symmetry, interact through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds via the non-coordinated water molecules (Table 2) to give rise to a tightly held three-dimensional structure.


The silver trifluoracetate complex with 4 -aminopyridine adopts a similar ion-pair motif but that compound does not incorporate any water molecules of crystallization (Zhu, Zeng et al., 2003).

## Experimental

Silver(I) oxide ( $1 \mathrm{mmol}, 232 \mathrm{mg}$ ) and terephthalic acid ( 1 mmol , 166 mg ) were dissolved in an aqueous ammonia solution ( 10 ml ). To the clear solution was added a solution of 4 -aminopyridine ( 1 mmol , $94 \mathrm{mg})$ dissolved in acetonitrile ( 2 ml ). The mixture was set aside for a week for the colorless crystals of (I) to separate from the solution in about $60 \%$ yield. Analysis calculated for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{Ag}_{2} \mathrm{~N}_{8} \mathrm{O}_{14}$ : C35.91, H 5.17, N 11.97\%; found: C 35.88, H 5.91, N $11.90 \%$.

## Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right) \cdot 10 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=936.48$
Triclinic, $P \overline{1}$
$a=9.1463$ (5) A
$b=10.7369$ (6) $\AA$
$c=10.9623$ (7) $\AA$
$\alpha=113.685(1)^{\circ}$
$\beta=93.418(1)^{\circ}$
$\gamma=95.906(1)^{\circ}$
$V=974.6(1) \AA^{3}$

## Data collection

Bruker SMART APEX areadetector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.625, T_{\text {max }}=0.814$
6098 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.109$
$S=1.12$
4294 reflections
292 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
Z=1
$$

$D_{x}=1.596 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3817 reflections
$\theta=2.4-28.1^{\circ}$
$\mu=1.08 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colorless
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

4294 independent reflections
3955 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-11 \rightarrow 9$
$k=-13 \rightarrow 12$
$l=-14 \rightarrow 12$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0673 P)^{2}\right. \\
& +0.0987 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.49 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.45 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.029 \text { (2) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

| $\mathrm{Ag} 1-\mathrm{N} 1$ | $2.118(2)$ | $\mathrm{Ag} 1-\mathrm{N} 3$ | $2.121(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 3$ | $174.9(1)$ |  |  |

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | D-H | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N} 2-\mathrm{H} 2 n 1 \cdots \mathrm{O} 1 w$ | 0.85 (1) | 2.21 (1) | 3.039 (3) | 166 (3) |
| $\mathrm{N} 2-\mathrm{H} 2 n 2 \cdots \mathrm{O} 5 w^{\text {ii }}$ | 0.85 (1) | 2.22 (1) | 3.068 (3) | 176 (3) |
| $\mathrm{N} 4-\mathrm{H} 4 n 1 \cdots \mathrm{O} 5 w^{\text {iii }}$ | 0.86 (1) | 2.28 (2) | 3.081 (4) | 155 (4) |
| $\mathrm{N} 4-\mathrm{H} 4 n 2 \cdots \mathrm{O} 1 w^{\text {iv }}$ | 0.84 (1) | 2.40 (2) | 3.191 (4) | 158 (4) |
| $\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 2 w$ | 0.84 (1) | 1.89 (1) | 2.727 (3) | 178 (3) |
| $\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 3 w^{v}$ | 0.85 (1) | 2.04 (1) | 2.870 (3) | 169 (4) |
| $\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O} 1^{\text {vi }}$ | 0.85 (1) | 1.95 (1) | 2.778 (2) | 164 (3) |
| $\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 2^{\text {vii }}$ | 0.84 (1) | 1.92 (1) | 2.748 (3) | 165 (3) |
| $\mathrm{O} 3 w-\mathrm{H} 3 w 1 \cdots \mathrm{O} 1$ | 0.85 (1) | 1.88 (1) | 2.718 (3) | 172 (4) |
| $\mathrm{O} 3 w-\mathrm{H} 3 w 2 \cdots \mathrm{O} 1 w^{\text {iv }}$ | 0.85 (1) | 2.09 (2) | 2.913 (3) | 164 (4) |
| $\mathrm{O} 4 w-\mathrm{H} 4 w 1 \cdots \mathrm{O} 2^{\text {viii }}$ | 0.85 (1) | 1.88 (1) | 2.718 (3) | 172 (4) |
| $\mathrm{O} 4 w-\mathrm{H} 4 w 2 \cdots \mathrm{O} 3 w$ | 0.84 (1) | 1.92 (1) | 2.757 (3) | 170 (3) |
| $\mathrm{O} 5 w-\mathrm{H} 5 w 1 \cdots \mathrm{O} 4 w$ | 0.84 (1) | 2.03 (1) | 2.853 (3) | 170 (4) |
| $\mathrm{O} 5 w-\mathrm{H} 5 w 2 \cdots \mathrm{O} 4 w^{\text {ii }}$ | 0.84 (1) | 2.06 (1) | 2.898 (3) | 180 (4) |
| $\begin{aligned} & \text { Symmetry codes: (ii) }-x,-y+1,-z+2 \text {; (iii) } \quad-x+1,-y,-z+1 \text {; (iv) } \\ & x+1, y-1, z-1 \text {; (v) } x, y+1, z \text {; (vi) }-x,-y+1,-z+1 \text {; (vii) } x-1, y+1, z \text {; (viii) } \\ & x-1, y, z \text {. } \end{aligned}$ |  |  |  |  |



Figure 1
View of (I), showing 50\% probability displacement ellipsoids (arbitrary spheres for the H atoms). [Symmetry code: (i) $1-x, 1-y, 2-z$.]

The aromatic H atoms were placed in idealized positions and constrained to ride on their parent atoms, with a $\mathrm{C}-\mathrm{H}$ distance of $0.93 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The amine and water H atoms were located in difference maps and were refined with distance restraints of $\mathrm{N}-\mathrm{H}=\mathrm{O}-\mathrm{H}=0.85$ (1) $\AA$; their displacement parameters were freely refined.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the Scientific Research Foundation for Returned Overseas Chinese Scholars, China, and the University of Malaya for supporting this study.

## References

Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Zhu, H.-L., Liu, X.-Y., Wang, X.-J., Yang, F., Usman, A. \& Fun, H.-K. (2003). Z. Anorg. Allg. Chem. 629, 1986-1990.

Zhu, H.-L., Zeng, Q.-F., Xia, D.-S., Liu, X.-Y, \& Wang, D.-Q. (2003). Acta Cryst. E59, m726-m728.

